Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery
نویسندگان
چکیده
BACKGROUND Mesoporous silica nanoparticles (MSNs) have several attractive properties as a drug delivery system, such as ordered porous structure, large surface area, controllable particle size as well as interior and exterior dual-functional surfaces. The purpose of this study was to develop novel lactosaminated mesoporous silica nanoparticles (Lac-MSNs) for asialoglycoprotein receptor (ASGPR) targeted anticancer drug delivery. RESULTS Lac-MSNs with an average diameter of approximately 100 nm were prepared by conjugation of lactose with 3-aminopropyl triethoxysilane modified MSNs. Characterization of Lac-MSNs indicated a huge Brunauer-Emmett-Teller (BET) surface area (1012 m(2)/g), highly ordered 2D hexagonal symmetry, an unique mesoporous structure with average pore size of 3.7 nm. The confocal microscopy and flow cytometric analysis illustrated Lac-MSNs were effectively endocytosed by ASGPR-positive hepatoma cell lines, HepG2 and SMMC7721. In contrast, non-selective endocytosis of Lac-MSNs was found in ASGPR-negative NIH 3T3 cells. The cellular uptake study showed the internalization process was energy-consuming and predominated by clathrin-mediated pathway. Model drug docetaxel (DTX) was loaded in the mesopores of Lac-MSNs by wetness impregnation method. In vitro cytotoxicity assay showed that DTX transported by Lac-MSNs effectively inhibited the growth of HepG2 and SMMC7721 cells in a time- and concentration- dependent manner. CONCLUSIONS These results demonstrated that Lac-MSNs could be a promising inorganic carrier system for targeted intracellular anti-cancer drug delivery.
منابع مشابه
Erratum to: Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery
© 2015 Quan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if chan...
متن کاملApplication of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملThiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery
The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...
متن کاملThiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery
The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...
متن کاملFolic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery.
Site-specific stimuli responsive nanomaterials are an important breakthrough for the improvement of modern therapies in nanomedicine. Mesoporous silica nanoparticles are good candidate for the development of targeted delivery system as their surface can be easily modified with functional groups in order to achieve controlled and specific release. We designed a drug delivery system based on meso...
متن کامل